The goal of zFactor.DL is to create a correlation using neural networks.
These observations have been taken from a digital scan of the 1942 Standing-Katz chart for hydrocarbon gases.
The original data was gracefully provided by the authors of the paper [Kamyab, M., et al., Using artificial neural networks to estimate the z-factor for natural hydrocarbon gases, J. Pet. Sci.Eng. (2010), doi:10.1016/j.petrol.2010.07.006] (http://www.sciencedirect.com/science/article/pii/S0920410510001427?via%3Dihub).
The original dataset, for Ppr from 0 to 15, is an Excel file named SK_data.xls with Ppr, Tpr and z in columnar format with 2853 rows and 60 columns. It is under the folder [./inst/extdata] (https://github.com/f0nzie/zFactor.DL/tree/master/inst/extdata) in this repository. They are three columns or set per Tpr curve.
row Ppr.0 Tpr.0 z.0 Ppr.1 Tpr.1 z.1 ... Ppr.19 Tpr.19 z.19
1
.
.
.
2853
The tidy dataset contains 57964 observations of compressibility factors at different Pseudo-reduced Temperatures and Pseudo-reduced pressures. The original data was converted to tidy format using R. Refer to notebook 01-read_raw_data.Rmd for step by step process.
The original file has been converted to a tidy format file named tidy_SK.csv with 57,060 observations and 4 variables with the column names Tpr, Ppr, z and set number. This file is under the same folder [./inst/extdata] (https://github.com/f0nzie/zFactor.DL/tree/master/inst/extdata).
The tidy dataset format looks like this, 57,060 observations (rows) and 4 variables (columns):
row Tpr Ppr z set
1
2
.
.
.
57060
data("sk_tidy")dim(sk_tidy)
#> [1] 57964 5names(sk_tidy)
#> [1] "Tpr" "Ppr" "z" "set" "range"min(sk_tidy$Tpr)
#> [1] 1.05
max(sk_tidy$Tpr)
#> [1] 3
min(sk_tidy$Ppr)
#> [1] 0
max(sk_tidy$Ppr)
#> [1] 30
min(sk_tidy$z)
#> [1] 0.251754
max(sk_tidy$z)
#> [1] 2.66summary(sk_tidy)
#> Tpr Ppr z set
#> Min. :1.050 Min. : 0.000 Min. :0.2518 Min. : 0.000
#> 1st Qu.:1.300 1st Qu.: 2.558 1st Qu.:0.8477 1st Qu.: 4.000
#> Median :1.600 Median : 5.680 Median :0.9921 Median : 9.000
#> Mean :1.743 Mean : 7.008 Mean :1.0335 Mean : 9.406
#> 3rd Qu.:2.200 3rd Qu.:11.853 3rd Qu.:1.2621 3rd Qu.:14.000
#> Max. :3.000 Max. :30.000 Max. :2.6600 Max. :19.000
#> range
#> Length:57964
#> Class :character
#> Mode :character
#>
#>
#> data("sk_tidy_lp")
summary(sk_tidy_lp)
#> Tpr Ppr z set
#> Min. :1.050 Min. : 0.000 Min. :0.2518 Length:57060
#> 1st Qu.:1.288 1st Qu.: 2.525 1st Qu.:0.8439 Class :character
#> Median :1.550 Median : 5.577 Median :0.9882 Mode :character
#> Mean :1.738 Mean : 6.754 Mean :1.0214
#> 3rd Qu.:2.050 3rd Qu.:11.647 3rd Qu.:1.2509
#> Max. :3.000 Max. :15.001 Max. :1.7536data("sk_tidy_hp")
summary(sk_tidy_hp)
#> Tpr Ppr z set
#> Min. :1.40 Min. :16.0 Min. :1.363 Length:904
#> 1st Qu.:1.75 1st Qu.:19.5 1st Qu.:1.585 Class :character
#> Median :2.10 Median :23.0 Median :1.749 Mode :character
#> Mean :2.10 Mean :23.0 Mean :1.792
#> 3rd Qu.:2.45 3rd Qu.:26.5 3rd Qu.:1.945
#> Max. :2.80 Max. :30.0 Max. :2.660